Anthropocene is a neologism meaning “a geological epoch dating from the commencement of significant human impact on Earth’s geology and ecosystems.” However, what is involved is more than unintended consequence. Having already upset the natural equilibrium, it seems we are now obliged to deliberately intervene—either to restore it or to finish the job of creating a man-made world in place of nature. What is new on the anthropo scene is the prospect of taking deliberate charge of human destiny, indeed the future of the planet. It is the prospect of completely re-creating nature and human nature—blurring or obliterating the very distinction between natural and artificial. The Anthopocene could be short-lived, either because the project is doomed and we do ourselves in or because the form we know as human may be no more than a stepping stone to something else.
In one sense, the Anthropocene dates not from the 20th century (nor even the Industrial revolution) but from human beginnings. For, the function of culture everywhere has always been to redefine the world in human terms, and our presence has always reshaped the landscape, creating extinctions and deserts along the way. Technology has always had planetary effects, which until recently have been moderate and considered only in hindsight. New technologies now afford possibilities of total control and require total foresight. Bio-engineering, nanotechnology, and artificial intelligence are latter-day means to an ancient dream of acquiring godlike powers. Along with such powers go godlike responsibilities.
Because that dream has been so core to human being all along, and yet so far beyond reach, we’ve been in denial of it over the ages, always projecting god-envy into religious and mythological spheres, which have always cautioned against the hubris of such pretention. Newly emboldened technologically, however, humanity is finally coming out of the closet.
The Anthropocene ideal is to master all aspects of physical reality, redesigning it to human taste. Actually, that will mean to the taste of those who create the technology. This raises the political question: who, if anyone, should control these technologies? Who will it benefit? More darkly, what are the risks that will be borne by all? When there was an abundance of wild, the natural world was taken for granted as a commons, which did not prevent private interests from fencing, owning, and exploiting ever more of it for their own profit.
From biblical times, the idea of natural resource put nature in a context of use, as the object of human purposes. And that meant the purposes of certain societies or groups, at the cost of others. Now that technologies exist to literally rearrange the building blocks of life and of matter, the concept of resource shifts from specific minerals, plants and animals to a more universal stuff—even “information.” One political question is who will control these new unnatural resources, and how to preserve them as a new sort of commons for the benefit of all? Another is how to proceed safely—if there is such a thing—in the wholesale transformation of nature and ourselves.
The human essence has always been a matter of controversy. More than ever it is now up for grabs. Because we are the self-creating creature, we cannot look to a fixed human nature, nor to a consensus, for the values that should guide our use of technology. A vision of the future—and the fulfillment of human potential—is a matter of opinions and values that differ widely. Some see a glorious technological future that is not pinned to the current human form. Others envision a way of life more integrated with nature and accepting of natural constraints. Still others view the human essence as spiritual, with human destiny unfolding on some divine timetable. The means to change everything are now available, but without a consolidated guiding vision.
Genome information is now readily available and so are technologies for using it to do genetic experiments at home. While some technologies require expensive laboratory equipment, citizen scientists (bio-hackers) can get what they need online and through the mail. Since much of the technology is low-tech and readily available, anyone in their basement can launch us into a brave new unnatural world.
One impetus for such home experimentation is social disparity: biohacking is in part a rebellion against the unfairness of present social and health systems. Like the hacker movement in general, biohackers want knowledge and technology to be fairly and democratically available, which means relatively cheap if not in the public domain. It’s about public access to what they consider should be a commons. They protest the patenting of private intellectual property that drives up the price of technology and medicine and restricts the availability of information. Social disparity promises to be endemic to all new technologies that are affordable (at least initially) only to an elite.
There are personal risks for those who experiment on themselves with unproven drugs and genetic modification. But there are risks to the environment shared by all as well, for example when an engineered mutant is deliberately released into the wild to deal with the spread of ticks that carry Lyme disease or the persistence of malaria-carrying mosquitos. The difference between a genetic solution and a conventional one can be that the new organism reproduces itself, changing the biosphere in potentially unforeseeable and irreversible ways. That applies to interventions in the human genome too. Bio-hacking is but one illustration of the potential benefits and threats of bio-engineering, which is the human quest to change biology deliberately, including human biology. The immediate promise is that genetic defects can be eliminated. But why stop there? Ideal citizens can be designed from scratch. Perhaps mortality can be eliminated. That amounts to hijacking evolution or finally taking charge of it, according to your view. To change human nature might seem a natural right, especially since “human nature” includes an engrained determination to self-define. But does that include the right to define life in general and nature at large, to tinker freely with other species, to terra-form the planet? And what constitutes a “right?” Nature endows creatures with preferences and instincts but not with rights, which are a human construct, reflecting our very disaffection from nature. Who will determine the desirable traits for a future human or post-human being and on what grounds?
Tinkering with biology is one way to enhance ourselves, but another is through artificial intelligence. Bodies and now minds can be augmented prosthetically, potentially turning us into a new cyborg species (or a number of them). Another dream is to transcend embodiment (and mortality) entirely, by uploading a copy of yourself into an eternally-running supercomputer. Some of these aspirations are pipedreams. But the possibility of an AI takeover is real and already upon us in minor ways: surveillance, data collection, smart appliances, etc. The ultimate potential is to automate automation, to relieve human beings (or at least some of them) of the need to work physically and even mentally. Your robot can do all your housework, your job, even take your vacations for you! As with biotechnology, the surface motivation driving AI development is no doubt commercial and military. Yet, lurking beneath is the unconscious desire to step into divine shoes: to create life and mind from scratch even as we free ourselves from the limitations of natural life and mind.
Like biotechnology, the tools for AI development are commonly available and relatively cheap. All you need is savvy and a laptop. The implicit aim is artificial “general” intelligence, matching or exceeding human mental and physical capability. That could be in the form of superintelligent tools that remain under human control, designed for specific tasks. But it could also mean a robotic version of human slaves. Apart from the ethics involved, slaves have never been easy to control. It comes down to a tradeoff between the advantages of autonomy in artificial agents and the challenge to control them. Autonomy may seem desirable because such agents could do literally everything for us and better, with no effort on our part. But if such creations are smarter than we are, and are in effect their own persons, how long could we remain their masters? If they have their own purposes, why would they serve ours? The very idea of automating automation means forfeiting control at the outset, since the goal is to launch AI’s that effectively create themselves.
Radical conservationists and transhumanist technophiles may be at cross-purposes, but so are more moderate advocates of environment or business. As biological creatures, we inherit the universe provided by nature, which we try to make into something corresponding to our human preferences. The materials we work with ultimately derive from nature and obey laws we did not make. Scientific understanding has enabled us to reshape that world to an extent, using those very laws. We don’t yet know the ceiling of what is possible, let alone what is wise. How far should we go in transforming ourselves and nature? Why create artificial versions of ourselves at all, let alone artificial versions of gods? What used to be philosophical questions are becoming scientific and political ones. The world is our oyster and we the irritating grit within. Will the result be a pearl?